skip to main content


Search for: All records

Creators/Authors contains: "Ho, Paul T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We use molecular line data from the Atacama Large Millimeter/submillimeter Array, Submillimeter Array, James Clerk Maxwell Telescope, and NANTEN2 to study the multiscale (∼15–0.005 pc) velocity statistics in the massive star formation region NGC 6334. We find that the nonthermal motions revealed by the velocity dispersion function (VDF) stay supersonic over scales of several orders of magnitude. The multiscale nonthermal motions revealed by different instruments do not follow the same continuous power law, which is because the massive star formation activities near central young stellar objects have increased the nonthermal motions in small-scale and high-density regions. The magnitudes of VDFs vary in different gas materials at the same scale, where the infrared dark clump N6334S in an early evolutionary stage shows a lower level of nonthermal motions than other more evolved clumps due to its more quiescent star formation activity. We find possible signs of small-scale-driven (e.g., by gravitational accretion or outflows) supersonic turbulence in clump N6334IV with a three-point VDF analysis. Our results clearly show that the scaling relation of velocity fields in NGC 6334 deviates from a continuous and universal turbulence cascade due to massive star formation activities.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Abstract

    We present ALMA dust polarization and molecular line observations toward four clumps (I(N), I, IV, and V) in the massive star-forming region NGC 6334. In conjunction with large-scale dust polarization and molecular line data from JCMT, Planck, and NANTEN2, we make a synergistic analysis of relative orientations between magnetic fields (θB), column density gradients (θNG), local gravity (θLG), and velocity gradients (θVG) to investigate the multi-scale (from ∼30 to 0.003 pc) physical properties in NGC 6334. We find that the relative orientation betweenθBandθNGchanges from statistically more perpendicular to parallel as column density (NH2) increases, which is a signature of trans-to-sub-Alfvénic turbulence at complex/cloud scales as revealed by previous numerical studies. BecauseθNGandθLGare preferentially aligned within the NGC 6334 cloud, we suggest that the more parallel alignment betweenθBandθNGat higherNH2is because the magnetic field line is dragged by gravity. At even higherNH2, the angle betweenθBandθNGorθLGtransits back to having no preferred orientation, or statistically slightly more perpendicular, suggesting that the magnetic field structure is impacted by star formation activities. A statistically more perpendicular alignment is found betweenθBandθVGthroughout our studiedNH2range, which indicates a trans-to-sub-Alfvénic state at small scales as well, and this signifies that magnetic field has an important role in the star formation process in NGC 6334. The normalized mass-to-flux ratio derived from the polarization-intensity gradient (KTH) method increases withNH2, but the KTH method may fail at highNH2due to the impact of star formation feedback.

     
    more » « less
  3. Abstract

    We present Atacama Large Millimeter/submillimeter Array observations with a 800 au resolution and radiative-transfer modeling of the inner part (r≈ 6000 au) of the ionized accretion flow around a compact star cluster in formation at the center of the luminous ultracompact Hiiregion G10.6-0.4. We modeled the flow with an ionized Keplerian disk with and without radial motions in its outer part, or with an external Ulrich envelope. The Markov Chain Monte Carlo fits to the data give total stellar massesMfrom 120 to 200M, with much smaller ionized-gas massesMion-gas= 0.2–0.25M. The stellar mass is distributed within the gravitational radiusRg≈ 1000 to 1500 au, where the ionized gas is bound. The viewing inclination angle from the face-on orientation isi= 49°–56°. Radial motions at radiir>Rgconverge tovr,0≈ 8.7 km s−1, or about the speed of sound of ionized gas, indicating that this gas is marginally unbound at most. From additional constraints on the ionizing-photon rate and far-IR luminosity of the region, we conclude that the stellar cluster consists of a few massive stars withMstar= 32–60M, or one star in this range of masses accompanied by a population of lower-mass stars. Any active accretion of ionized gas onto the massive (proto)stars is residual. The inferred cluster density is very large, comparable to that reported at similar scales in the Galactic center. Stellar interactions are likely to occur within the next million years.

     
    more » « less
  4. null (Ed.)
    ABSTRACT The youngest, closest, and most compact embedded massive star cluster known excites the supernebula in the nearby dwarf galaxy NGC 5253. It is a crucial target and test case for studying the birth and evolution of the most massive star clusters. We present observations of the ionized gas in this source with high spatial and spectral resolution. The data include continuum images of free–free emission with ≈0.15 arcsec resolution made with the Karl G. Jansky Very Large Array (JVLA) at 15, 22, and 33 GHz, and a full data cube of the [S iv] 10.5 μm  fine-structure emission line with ≈4.5 km s−1 velocity resolution and 0.3 arcsec beam, obtained with the Texas Echelon Cross Echelle Spectrograph (TEXES) on Gemini North. We find that (1) the ionized gas extends out from the cluster in arms or jets, and (2) the ionized gas comprises two components offset both spatially and in velocity. We discuss mechanisms that may have created the observed velocity field; possibilities include large-scale jets or a subcluster falling on to the main source. 
    more » « less
  5. Abstract We present the first detailed polarimetric studies of Cygnus A at 230 GHz with the Submillimeter Array (SMA) to constrain the mass accretion rate onto its supermassive black hole. We detected the polarized emission associated with the core at a fractional polarization of . This low fractional polarization suggests that the polarized emission is highly depolarized. One of the possible explanations is due to a significant variance in the Faraday rotation measure within the synthesized beam. By assuming the Faraday depolarization caused by inhomogeneous column density of the magnetized plasma associated with the surrounding radiatively-inefficient accretion flow within the SMA beam, we derived the constraint on the mass accretion rate to be larger than 0.15 yr −1 at the Bondi radius. The derived constraint indicates that an adiabatic inflow–outflow solution or an advection-dominated accretion flow should be preferable as the accretion flow model in order to explain the jet power of Cygnus A. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
  9. Abstract The nearby radio galaxy M87 is a prime target for studying black hole accretion and jet formation 1,2 . Event Horizon Telescope observations of M87 in 2017, at a wavelength of 1.3 mm, revealed a ring-like structure, which was interpreted as gravitationally lensed emission around a central black hole 3 . Here we report images of M87 obtained in 2018, at a wavelength of 3.5 mm, showing that the compact radio core is spatially resolved. High-resolution imaging shows a ring-like structure of $${8.4}_{-1.1}^{+0.5}$$ 8.4 − 1.1 + 0.5 Schwarzschild radii in diameter, approximately 50% larger than that seen at 1.3 mm. The outer edge at 3.5 mm is also larger than that at 1.3 mm. This larger and thicker ring indicates a substantial contribution from the accretion flow with absorption effects, in addition to the gravitationally lensed ring-like emission. The images show that the edge-brightened jet connects to the accretion flow of the black hole. Close to the black hole, the emission profile of the jet-launching region is wider than the expected profile of a black-hole-driven jet, suggesting the possible presence of a wind associated with the accretion flow. 
    more » « less
    Free, publicly-accessible full text available April 27, 2024